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ABSTRACT

By using a linear systems theory approach, an ocean
medium transfer function based on the WKB approximation can be
developed. The phase computations for the transfer function
are made by evaluating the WKB phase integral.

Two applications of ray acoustics theory are investigated
as accurate, efficient alternatives to direct numerical
integration of the WKB phase integral. Both applications base
phase computations on signal travel time. The difference is
their treatment of the sound-speed versus depth data pairs.
One forms a sound-speed profile by using the piecewise linear
approximation method while the other uses an Akima cubic
spline fit to the data.

Each method can identify source-to-receiver eigenrays and

provide ray trace plots.
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I. INTRODUCTION

A. BACKGROUND

In analyzing ocean acoustic pulse-propagation problems,
accurate phase calculations must be performed in order to
predict the acoustic signal at the receiver. Linear systems
theory provides analytical expressions for analyzing the
propagating acoustic field [Refs. 1 - 4]. These well-known
equations form the basis for the FORTRAN programs developed in
this thesis.

Program input is depth versus sound-speed data pairs where
the speed of sound is an arbitrary function of depth. The
ocean 1is viewed as a linear, time-variant, space-variant
filter. The WKB approximation can specify this filter's
transfer function [Refs. 1 - 4]. For the arbitrary sound-
speed profile, no exact transfer function exists. The
transfer function requires a method for evaluating signal
phase at the receiver.

Two phase evaluation methods are presented and contrasted.
Each method calculates the phase of the acoustic signal for a
specified horizontal range. The first method overlays a
piecewise linear profile on the input sample values for the
speed of sound at various depths. The theory of ray acoustics
is used to calculate travel time and phase. The second method

fits a smooth cubic spline curve to the input samples. This




method solves the propagation problem using a system of three,
first-order differential equations [Ref. 5)]. Both methods
make phase calculations using signal travel tinmes.
Additionally, each method is capable of identifying eigenrays
or rays that directly connect the signal source to the
receiver.

Another method is introduced to validate results. Direct
numerical integration is performed to calculate phase for a
single gradient, linear, sound-speed profile. A separate
FORTRAN program implements this numerical integration routine
providing a totally independent verification.

An overview of the theory behind each method is presented
in Chapter II. Computer simulation results are presented in
Chapter III for various input sound-speed profiles. Tabular
results of phase calculations are presented for each of the
three analysis methods. Using input from the piecewise linear
and the cubic spline/differential equation solution methods,

ray traces of the propagating field are presented as a visual

aid in interpreting the results.




II. THEORETICAL BACKGROUND FOR THE
EVALUATION OF PHASE INTEGRALS
A. UNDERWATER ACOUSTIC PULSE PROPAGATION

Ocean acoustic pulse-propagation models can be derived by
using the principles of linear, time-variant, space-variant,
systems theory and the physics of wave propagation in
inhomogeneous media. Linear systems theory allows for the
development of an ocean medium transfer function. An ocean
medium transfer function that 1is based on the WKB
approximation has been derived and is given by References 1

and 2 as follows:

S LIS L SR
H(L, f,,¥0iY) = —2 e Jo 12 (y-¥e) (2.1)

JTK, (7) ]

where
f is the frequency in Hz

is the radial, spatial frequency in
cycles per meter

Yo is the source depth in meters

A=jVIky(YO)| (2_2)
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ky(y) is the propagation vector component in
the Y direction with units of radians
per meter and is given by

) {r 2m((£/c(y)1° - £4)* £ < £/c(y) (2.3)
y =

F jomi£l - (£/c(y) 1) £ > £/c(y) (2.4)

c(y) is the sound-speed expressed as a function
of depth with units of meters per second

f, 1is the transmitted (input) spatial frequency

" in the Y direction at the source in cycles per
meter and is given by

fY = 2 2. %

r [(£/c)’ - £4% , £ < £/¢, (2.5)
FOE - (£/cy)7)

» £ > £/¢ (2.6)
and
C, 1is the speed of sound in meters per second at
the source depth y,;, that is, ¢4 = c(yy) 7

The plus (minus) sign in Egs. (2.3) and (2.5) is chosen
whenever y - y, > 0 (Y - ¥ < 0). The minus (plus) sign in
Egs. (2.4) and (2.6) corresponds to the plus (minus) sign in
Egs. (2.3) and (2.5). This thesis deals only with propagating
waves. Therefore, Egs. (2.4) and (2.6) representing the
generation of evanescent waves (i.e., decaying exponentials),
will not be used.

The evaluation of the phase integral in Eq. (2.1), namely,

_ Iy
0,(y) =[ k(O (2.7)




has been attempted in past studies in which solution
techniques included direct integration and binomial expansions
[Ref. 3].

Computer programs using these techniques proved to be very
expensive in terms of CPU time. This thesis compares four
different methods for evaluating the phase integral. The four

methods are presented in the following sections.

B. DIRECT INTEGRATION
Computer code was developed to directly evaluate the phase
integral given by (Eg. 2.7) using numerical integration
routines from the International Math and Statistics Library
(IMSL). Direct integration is a time-consuming technique that
was applied only under the following constraints:
- free-space acoustic propagation

- linear sound-speed profile with a single gradient g
in inverse seconds and

- propagating signals that have not passed through a
turning point in the medium.

Expressions for the propagation vector component ky(y) of
the phase integral are given by Egs. (2.3) and (2.4). For a
linear sound-speed profile with a single gradient, the
dependence of c(y) on depth y is given by
c(y) = c(yy) + g(y - Yo) (2.8)
where

c(Yy,) 1s the sound-speed at the source depth
Yy, meters




g is the sound-speed gradient, and

Y is the desired depth for sound-speed.

Since the direct integration approach is limited to free-
space, single gradient, propagation problems, it is used only
to validate the results of other solution techniques for
several simple test cases. The results will be compared
against the next two methods to be presented. These methods
will apply the theory of ray acoustics [Ref. 4 & 5] to find
travel time. Phase calculations will be based on travel time
calculations.

C. PHASE CALCULATIONS BASED ON PIECEWISE LINEAR SOUND-SPEED

PROFILES

A FORTRAN program developed by Lim [Ref. 5] was the ray
acoustics propagation code that was used to draw ray trace
plots and to calculate travel time, in addition to the depth,
angle of propagation and path length along a ray path as a
function of horizontal range. This method applies ray
acoustics to a piecewise linear sound-speed model of the ocean
medium. Based on the input sound-speed versus depth data
pairs, layers are defined in the ocean medium. Each layer has
an upper and lower boundary at specific depths. A constant
sound-speed gradient g is calculated for each layer. The
sound-speed for any desired depth is computed using Eq. (2.8)
with the appropriate gradient.

In a constant gradient medium, ray acoustics theory allows
calculation of travel time with closed-form equations. For an

6




incremental increase in horizontal range from the source, the
angle of arrival for the propagating ray can be shown to be
[Ref. 5].

B(y) = cos’' [cosB, - b*g(y) * rngstp] (2.9)
where

By is the ray launch angle,

g(y) 1is the gradient in the layer at depth y, and

rngstp is the incremental increase in horizontal
range.

The ray parameter b in Eg. (2.9) is given by [Refs. 4 & 5].
b = sing, / c(y,) (2.10)

Knowing the arrival angle B(y), the ray depth y is given by
[Refs. 4 & 5]

sinf(y) _
sinf(y,)

1 (2.11)

y = yo+__

The arrival angle also allows calculation of travel time from
[Refs. 4 & 5]

1
tan[g (y) /2] (2.12)
9 | tanf(yy) /2]

Once the travel time (in seconds) is found for the desired
horizontal range, total phase is given by

8, = 2nfr (2.13)
The phase integral given by Eg. (2.7) represents a phase

change in the depth (y) direction. The constant value of the




propagation vector component in the radial direction allows
for easy calculation of phase change in the radial direction.
This value is given by
8, = 2mf_ * hrzrng (2.14)
where hrzrnsg 1s the total horizontal range traveled.
The phase in the depth direction is
8, = 8; — 6. : (2.15)
Phase expressed in radians is a modulo 27 function. The
proper solution for the phase integral Eq. (2.15) must be
expressed as a modulo 27 function:
8, = modulo (6, , 27 ) . (2.16)
This method (referred to as method 1 in Ref. 5) is capable
of analyzing propagating rays at any horizontal range in
either free space or a bounded medium.
D. PHASE CALCULATIONS BASED ON AKIMA CUBIC SPLINES AND
ORDINARY DIFFERENTIAL EQUATIONS
This application of ray acoustics applies a more
sophisticated treatment to the depth versus sound-speed data
pairs sampled from the ocean medium. The data pairs are used
to form a smooth Akima cubic spline sound-speed profile.
Splines offer the advantage of using all data points 1in
generating a profile, and they place no restrictions on
spacing between data points. The Akima version of the cubic
spline was chosen for 1ts excellent ability to combat wiggles

in the profile, that is, it suppresses oscillations that would




cause overshoots and undershoots in the sound-speed versus
depth profile.
This method uses ray acoustics theory to generate a system

of three, first-order differential equations [Ref. 5]:

Yy = Y, (2.17)
. -c (y,)
Y, = 3 (2.18)
b c™(y,)
and
. 1
Y3 5= —5—— (2.19)
bc (y,)
where

c(y,) is the derivative of the sound-speed with
respect to depth at depth y,,

Vi is the ray depth,

Y is the cotangent of the ray's arrival angle
B(y), and

Yz is the travel time of the ray.

Once solved, this system of differential equations allows
phase to be calculated from travel time. The phase
calculation is performed exactly as shown for the piecewise
linear sound-speed profile.

Like the previous method, the Akima cubic
spline/differential equation solution can be used on free
space and bounded media problems.

9




E. EIGENRAYS
Eigenrays are propagating rays that exactly connect the

sound source to the receiver. The FORTRAN propagation code
developed can search for and identify eigenrays. The input
required is

- depth versus sound-speed data pairs,

~ source depth in meters,

- receiver depth and range in meters,

- angle step in degrees between possible eigenrays to
be evaluated, and

- allowed depth error denoted y,.., in meters.
Rays passing within the allowed error or tolerance y..,. ©f the
receiver are identified as eigenrays. The eigenray mode can
employ either the piecewise linear sound-speed profile or the
Akima cubic spline/differential equation method for ray
propagation.

The eigenrays are found by trial-and-error. This search
method was chosen after the IMSL DBVPMS program failed to
solve the problemn. The DBVPMS program is a differential
equation solver that was applied to the system of differential
equations given by Egs. (2.17) through (2.19). The routine
uses the shooting method to find eigenray solutions to
boundary value problems. It was unable to converge to a
solution. Solutions for the acoustic problems investigated

are difficult for this algorithm because of

10




- long propagation distances,

- the inhomogeneous ocean presents a continuously
varying medium with discrete boundaries, and

- the system of differential equations has non-constant
coefficients whose values are a function of depth.

When the eigenray mode is selected, rays that are not

refracted or reflected to within y,., of the receiver are

discarded.

11




III. COMPUTER SIMULATION RESULTS

A. OVERVIEW
The computer simulation results presented in this
chapter perform phase calculations intended to:
- show that ray acoustics can be wused to evaluate
the phase integral producing the same results as
direct numerical integration,
- show that the two methods of applying ray acoustics
theory (presented in Chapter II) produce equivalent

results within an acceptable tolerance,

- compare speed versus accuracy for the two methods for
a variety of test cases, and

- demonstrate the ability to identify eigenrays using
either of the ray acoustics methods.
B. DIRECT INTEGRATION
In the previous chapter, By(y) was shown as the solution

to the phase integral in the depth direction.

4
6,(v) =[ K, ()l (2.7)

The straight-forward evaluation technique is the brute
force approach using direct numerical integration. The phase
integral will be evaluated using direct numerical integration
for a simple test case. The results will then be compared to
phase values obtained using ray acoustics calculating phase

values from travel times.

12




Conditions for the test case are:
- source depth of 10 meters,
- receiver depth of 100 meters,

- linear sound-speed pgpfile with a single, constant
gradient of 0.016 sec and

- four values of radial spatial frequency (FR values)
will be evaluated.

For each FR value, tabular results will show the
corresponding ray launch angle B(y,). The relation between
the FR value and this launch angle is [Ref. 4]:

B(y,) = sin [FR * c(y,)/f] (3.1)
where

f is the frequency in HZ, and

c(Yy) is the speed of sound at the source depth.

Table 3.1 shows the results produced by direct numerical
integration. Tables 3.2 and 3.3 show the results for the
Akima cubic spline/ordinary differential equation solver
(ODE solver) and the piecewise linear approximation ray
acoustics techniques, respectively.

The parameter of interest is THETAY representing the phase
change in the depth or Y direction. Table 3.1 shows these 0
values to be approximately 92, 86, 75, and 56 radians for the
four FR values chosen. Tables 3.2 and 3.3 contain four sets
of entries, each corresponding to an FR value. These entries
begin at 0 meters range and end at the range corresponding to

100 meters depth; thus, solving the phase integral for the BY

13




TABLE 3.1

PHASE INTEGRAL SOLUTION BY DIRECT NUMERICAL INTEGRATION

INPUT DATA FOR PHASE IMTEGRAL EVALUATION

F . 2L0.0 K2 YL = 10.0 H YU s 100.0 M RATIO = 0.979) NIR «
€403  0.000000 EREL « §.0001CO

YREF = 0.0 M CYREF s 1500.0 M/SEC G » 0.016000 (1/SEC)

METHOD = 2

EVALUATION BY IMSL10 ROUTIME DQDAG WITH IRWE = 2

FRICYCLES/M)} BETAYO(DEG) RAMNGE AT ANGLE OF ARRIVAL TURNING POINT TURNING POINT THETAR(RAD) THETAY(RAD)
' Yu BETAY(DEG) DEPTHIM) RANGE (M)
0.0332944859 11.52% 18.36009 11.53¢ 0.3755%€4+0¢6 0.45%BGE+0¢ 0.38408E+01 0.%229167934E4+02
0.066%829718 23,552 319.2%21% 23.576 0.140%0E+0¢ 0.21510E+0¢6 0.16623E+02 0.8633840249€+02
0.099883457¢  36.82¢ 67.641892 36.8¢6¢ 0.62682E+05 0.12522€°0¢ 0.62324E<02 0.7537852191E-02
C.1221:794:8 .06 119.80722 58.122 0.23574E+0S 0.70527€+05 0.10D25E+08 0.5657368412€4+02
ERAYS 3 F PRYALL = T
Yo » 10.0 M DEPTH = 100.0 M FREQC = 250.0 HZ CMAX = 1501.6 M/SEC
FREQC/CMAX « 0.16649 CYCLES/M RATIO » 0.9999 FRHAX ® 0.16647 CYCLES/M NFRS « &
DLIFR » 0.052296 CYCLES/H RHGZTP = 1.0 M HRZRHG 150.0 M YA = 0.0 M
HOTEY FRMIN » DLTFR
13
FR « 0.33294485881726€-01 CYCLET/M
BETAQ = 11.52457521170979 DES
RANGE (M) DEPTH(M) TRVLT(ZIEC) BETAY(DEG) BTEST THETAT(RAD) THETAR(RAD) THETAY(RAD)
0.0 10.00 0.000000 11.525 0.13318E-03 0.0000000E+00 0.0000000E*00 0.0000000E+00
18.4 100.00 0.061200 11.536 0.13318E-03 0.9613283E+02 0.3840846E*0] 0.9229168E+020
FR = 0.66588971763452E-01 CYCLFG/™
BETAQ e 23.55170283980132 CEG
PANGE (M) DEPTHIM) TAVLT(ZEC) BETAY([DEG) BTEST THETAT(RAD) THETAR(RAD} THETAY{RAD)
0.0 10.00 0.000000 23.552 0.26636E-03 0.C000000£00 0.0000000E*CD 0.0000000E-00
39.3 100.00 0.065420 23.57¢6 0.26634E-03 0.1027611E+03 0.1642073E402 0.8633840E402
FR ¢ 0.99883457645178E-01 CYCLES/M
BETAQ = 36 R2660%1 164646773 DEG
RAMGE (M) DEFTHIM) TRVLTIZEC) BETAY(DEG) BTESY THETAT(RAD) THETAR(RAD) THETAY{RAD)
0.0 10.00 0.099000 6.824 0.3995%€E-03 0.0000000E°00 0.0000000E+00 0.0000000E+00
67.4 100.00 0.074932 36.866 0.3995:E-03 0.1177023E+03 0.6232374E+02 0.7537857E+02

FR ¢+ 0.133177942526905+00 CYCLES/M

BETAQ » $3.04978575821%1% CEG
RAMIE (M) perTHiM) TRYLT(SENY BETAYIDES) RIEST THETAT(RAD)
0.0 19.92 0.0C00e00 §1.c40 0.51271€-0% 0.0000000€E+00
119.8 icc.oc 0.0%98:9 5.122 0.5!271€-03 0.1568262€+03
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THETAR(RAD?
0.0CC00005+00
0.100I52SE+03

THRETAVY(RAD)
0.000C0OCOE 0D
0.56%73¢BE*02




TABLE 3.3

PHASE INTEGRAL SOLUTION BY PIECEWISE LINEAR APPROXIMATION

RAY TRAZING USING PIECEWIZI LINZAR APPROAIMATION
CAlE LeLd

NOATA = 4 NUMBER OF GRADIENTS = 3
G{ 1) = ¢.leltlE-C) 1/3EC G( 2y = 0.1600CE-Cl 1/3ECT
G{ ) = 0.16203CE-C} 1/3EC
PRTALL = T
LEPTH = 1C2.0 M FRECZ « 25C.0 HZ
C.16669% CYCLEG/HM RATIO = C.9999 FR4Ax s 0.16647 CYCLES/M
235 CrCLES/M RNGSTP = 1.0 M FR2KNS 3 150.0 M
CLTIFR
FR s £.2227244BERa17265-C1 CvILES/M
ELTAD = 11.82457521170%3C LEG
RadI0) LLTire) ELTAY(LES) BTEST THETATIRAD)
.2 10.0¢C 11.829 0.1I3:e8-02 C.CCCOTCCECO
i5.4 105.C8 11.52¢ C.1321eE~-¢C3 C.9611253E02
FrRo2 0 4slR2o7 76148201 CYILIo/M
EZTAY = 21.8517C280¢8C1I4 LEG
RasnLe () LM EETAY(LES) BTEST THETATIRAD)
t.T ic.cco C.CCCT2L3 23.858 0.266205-C3 C.0CC2CCT0CEeCO
3.2 183.CG 0.0u5«20 23.576 0.26616E5-02 0.1C27611E403
Fa = £.9383249576451/782-C1 CYILESG/M
ZZTAD = 16.82443911644775 LIS
Earlsi™) LIPTHIM) BTEST THETAT(RAD)
‘ 1¢.389 C.339522-C32 0.0CoCCCLESDD
67.4 1532.C03 0.39952E-02 G.1177022E+C3
Floos 2L 11TiTTAI008300 400 DNLLES/M
rLtal = §2.04%23570 211200 LLS
RIS A LLFTHI) K BETAY(LIG) BTEST
. [ 53.C49 c.52271E-¢
17,2 ol.ct z.id2 C.5I271E-02
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CMAX = 1501.6 M/CEC

NFRS = 8

YR =2 0.0 M

THEZTAR(RAD)
0.0000C0CE+D0
0.184C846E+31

THETAR(RAD)
0.0C0000CE~00

0.1642273E-C2

THETAR(RAD)

0.00C000CE-CO
0.6423237¢E402

THETAY(RAD)
0.00CCCCCEs00
0.922916BE«C2

THETAY (RAD)
0.C0CCOCCE+00
0.863384CE+02

THETAY(RAD)
0.002000CE+00
0.7537857E+02

THETAY(RAD)
0.CCCCCCCESDC

0.5¢57368E+02




value when a ray travels from 10 to 100 meters depth. The
significance of these three tables is that the ray acoustics
methods are yielding the same phase values GY as the direct
integration method.

The conclusion to be derived from this is that ray
acoustics theory can be used to accurately evaluate the phase

integral.

C. VARYING BOUND-SPEED GRADIENTS
Both ray acoustics methods will now be applied to three
different test cases. A zero gradient, positive gradient
(+0.016 sec4), and a negative gradient (-0.016 sec4) linear
sound-speed profile will be used. These simulations will show
that both methods produce equivalent results within an
acceptable tolerance for a variety of media.
The conditions common to each simulation run are:
- source depth of 10 meters,
- horizontal range of 1 kilometer,
- ocean depth of 100 meters,

- speed of sound at the surface of 1500 meters per
second, and

- five values of radial spatial frequency (FR)
evaluated.
The results are presented in Tables 3.4 through 3.9. The
phase integral solution is the phase change in the Y (depth)

direction listed as the MODULO TWOPI THETAY value in radians.
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TABLE 3.4
ZERO GRADIENT, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE 1A

NDAYTA » & NUMBER OF GRADIENTS » 3
Gl 1) = 0.00000E00 }/SEC Gl 2) = 0.00000E-00 1/SEC
G( 3) « 0.00000E+00 }/SEC

YO » 10.0 ® DEPTN = 100.0 M FREQC » 250.0 M2 CHMAX « 1500,
FREQC/CMAX = 0.16667 CYCLES/M RATIO o 0.999% FRHAX » 0.16665 CYCLES/M NFRS » 8
DLTFR s 0.033330 CYCLES/M RNGSTP & 1.0 M HRZRNG = 1000.0 M

NOTE: FRMIN = DLTFR

0 M/SEC

NFR BETAO(DEG) DEPTH(M) TRVLY(SEC) BETAY(DEG) THETAT(RAD) THETAR (RAD) THETAY(RAD) MODWLO TWOP]

THETAY(RAD)
1 11.53¢ 90.5) 3.333667 148.664  0.523¢511E406 0.209G186E+03 0.5027093E+06  0.56489%)
2 23.%7¢ 98 .4 1.666833 156.624  0.26)18256E+0¢ 0.€188371E+03 0.2199419E+04  0.5037138
3 s6.8¢6¢ 56.4¢ 1.101222  163.136  0.1745506E+06 0.6282557E<03 0.1117248E+04 §.1243061
4 885.122 39.79 0.833617 126.878  0.1309128E+0¢ 0.8376743E+03 0.G67)16536E403  0.216688¢
S 89.1% 24.16 0.666733  89.190 0.1047302E+0¢ 0.1067093E+04 0.2094500E+00 ©.2094500
TOTAL CPU TIME s 0 MIN ., 22.63 SEC
TABLE 3.5
ZERO GRADIENT, ODE SOLVER SOLUTION
RAY TRACING USING AKIMA CUBIC SPLINE § QDE SOLVER
CASE 24
NDATA » &
Yo+ 10.0 M DEPTH » 100.0 M FREQC « 250.0 W2 CMAX = 1800.0 M/SEC
FREQC/CMAX = 0.16667 CYCLES/M RATIO « 0.99%9% FAMAX = 0.1664% CYCLES/M NFRS =  §
DLTFR =« 0.033330 CYCLES/M RNGSTP = 1.0 M MRZRNG o 1000.0 M

NOTE: FRMIN » DLTFR

NFR BETAG(DEG) DEPTH(M) TRVLT(SEC) BETAV(DEQ) THETAT(RAD) THETAR(RAD) THETAY{RAD)

1 11.53¢ %0.51 3.8533667 168.666 0.5236511E+0¢ 0.2094186E+0% 0.5027093E+0¢
2 23.5%7¢ 98 .46 1.666823  156.62¢ 0.2618256E+06 0.4188371E+03 0.2199G19E+06
3 36.8¢6 5¢.4¢ 1.111222 143.134 0.174550GE<06 0.6282557€+03 0.1117248E+04
4 $3.122 39,79 0.833417 12¢.978 0.130912B8E<04 0.93767¢3E+03 0.4714536E+08
S 8%.1% 24,14 0.666733 2%.19%0 0.1067302E+04 ©0.1047093£+04 0,2094500E+00

TOTAL CPU TIME » 1S MIN , $2.38 SEC
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TABLE 3.6
POSITIVE GRADIENT, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PECEWISE LINEAR APPROXIMATION

CASE 18

HDATA « & HUMBER OF GRADIENTS » 3
GC 1) « 0.16000E-01 1sS€EC G{ 2) = ©0.16000E-01 1/SEC
Gt 3) » 0.16000E-0) 1/3EC

YO o 10.0 M DEPYH 2 100.0 M FREOC » 250.0 HZ CMAX » 1501.6 M/SEC
FREQC/CMAN = 0.)664% CYCLES/M RATIO = 0.999¢ FRMAX = D.16447 CYCLES/M MNFRS = S
DLTFR o 0.03329¢ CYCLES/M RNGSTP = 1.0 M HRIRNG » 1000.0 M

NOTE: FRMIN » DLTFR

NFR BETAO(DEG) DEPTH(M) TRVLT(SEC) BETAY(DEG) THETAT(RAD) THETAR (RAD) THETAY{RAD) MODWLO TwOP1
THETAV(RAD)

1 11.%2% 87.80 $.353652 168.466 0.5056GB0E-04 0.2091954E-03 0.5027293E404  0.7647549

2 23.8%2 LI 1.666826 1%6.455  0.261824)E+04 0.€193908E+03 0.21%98S0E¢04  0.734¢89090

s . 3¢ 824 55 .38 1.111182  )63.1%5 O.1765456E+06 0.6275863E°03 O0.1117870E¢0¢  §.7462108

6 %3.0¢Y 38.73 0.833378 126.927 0.130%066E-0¢ O©0.8367817€E°03 0.4722847E+08  1.0657792

s 87.36% $0.71 0.667000 87.974 D.1067721E+0¢ 0.1045977E°04 0.1743798E°0] §.7¢37978

TOYAL CPU TIME = 0 MIN . 22.0% SEC

TABLE 3.7
POSITIVE GRADIENT, ODE SOLVER SOLUTION

RAY TRACING USING AXIMA CUBIC SPLINE 8§ ODE SOLVER

CASE 2B

NDATA » 4

Yo = 10.0 ¥ DEPTH = 100.0 M FREQC « 250.0 W2 CHAX » 1501.4 M/SEC
FREOC/CMAX = D.1664% CYCLES/M RATIO = 0, 99099 FRMAX « 0.16647 CYCLES/M NFRS » 8

DLTFR o 0.03329%¢ CYCLES/M RNGSTP s 1.0 M HRIRNG « 1000.0 M

NOTE: FRMIN s DUTFR

NFR BETAO(DEG) DEPTM(M) TRVLT{SEC) BETAYIDEG) THETAT(RAD) THETAR(RAD) THETAY(RAD) MODULO THOPI

THETAY(RAD)
1 11.%2% 97.80 5.335652 168.66¢6 0.5234488E+04 0.20%195GE*03  0.S027093E+04 0.74626%3
2 23.%%2 6.9 1.665824  156.40% 0.24102<1E+06 0.6183908E°03 0.2]9°8C0F 04 0.730900%
3 3¢.82¢ $5.38 1.100192  143.1%% 0.1765486EC4  0.6275863E°03 O0.1117870E0¢ $.7662128
< £3.049 18.73 0.832%58 126.%27 0.13090686E404 O0.03678)7E*03 0. 47I08GFE03 1.0657708
13 97 .36 $0.71 0.667000 87.9%7¢ 0.1047721E+04 0.1045977E+046 0.1743798E+0] 1.76457978

TOTAL CPYU TIME = 16 MIN . 26¢.30 SEC
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TABLE 3.8
NEGATIVE GRADIENT, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE IC

NCATA = 4 NUMBER OF GRADIENTS » 3
G( 1) a -0.16000E-01 1/SEC G( 2) » -0.16000E-01 1/SEC
G{ 3) s -0.16000€-01 1/3EC

Yo s 10.0M DEPTH » 100.0 M FREQC » 250.0 MZ CHAX = 1500.0 M/SEC
FRECC/CMAX « 0.16667 CYCLES/M RATIO » 0.999%9 FRMAX » 0.16665 CYCLES/M NFRS » S
DLYFR » 0.031130 CYCLES/M RNGSTP = 1.0 M HRIRNG » 1000.0 M

NOTE: FRMIN s DLTFR

NFR BETAQ(DEG) DEPTHIM) TRVLTISEC) BETAY(DEG) TYHETAT(RAD) THETAR(RAD) THETAY(RAD) MODWLO TwoF]
THETAY(RAD)

H 11.53% 87.78 1.33704¢0 168.475 0.5J4012¢E*06¢ ©0.2094186E-03 0.5032706E~0¢ 6.157651¢

2 23.873 926.9%8 1.668622 156.450 0.2621065E°04 0.6188I71E+03 0.2202228E+04 3.113¢66583

3 36.861 5.3 1.112¢28  143.160 0.176741GE*04 0.6282557E<03 0.1119159E+04 0.7%15718

4 53.116 38.63 0.836¢2¢%  126.909 0.1310586E-04 0.8376743E+03 0.472%117E+08 1.6727921

s 88.812% 35.e7 0.667046 88.226 0.1067792E+064 0.1047093E+04 0.6999%612E400 0.69%99612

TOTAL CPU TIME » 0 MIN , 22,61 SEC

TABLE 3.9
NEGATIVE GRADIENT, ODE SOLVER SOLUTION

RAY TRACING USING AKIMA CUBIC SPLINE & ODE SOLVER
Case oC
NDATA = 4

¥e s 10.0 » DEPTH » 100.0 M FREQC » 2%0.0 M2 CMAX = 1500.0 M/SEC
FREQC/CHMAX » 0.16667 CYCLES/M RATIO = 0.%99n FRMAX » 0.16665 CYCLES/M NFRS = S
OLTFR + 0.033330 CYCLES/M RNGSTP » 1.0 M HRZRNG » 1000.0 ™

NOTE: FRMIN » DLTFR

WFR BETAO(DEG) DEPTH(M) TRVLT(SEC) BETAY(DEG) THETAY(RAD) THETAR(RAD) THETAY(RAD) MODIRO TWOP!
THETAY(RAD)

H 11.53% 87.77 3.337240 168.47% 0.5242126E+06 0.2094186E+03 0.5032706E+04 $.157665¢
2 23.97% 2% '8 1.668622 1%56.450 0.262106%5E+0¢ 0.41B8371E+08 0.2202228E+04 3.113¢4¢83
3 36.8¢1 55.32 1.112628 143.160 0.1767614E-06¢  0.6J8I557E+03 0.111915%E+04 0.7518700
< §3.11¢ 38.63 0.83636¢5 126.909 0.1310586E064 0.83767G63E+03 0.472°117E-03 1.6727921
5 99 .81% 35.67 0.66704¢ 88.22¢ 0.1047792E404 0.1047093E°06 0.6999612E+00 0.699%61°0

TOTAL CPU TIME » 16 MIN , 21.36 SEC
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Tables 3.4 and 3.5 show the results for the zero gradient
case. A comparison between two tables shows that the phase
values (MODULO TWOPI THETAY) agree perfectly. Additionally,
all other calculated values in the tables agree. The only
difference is the TOTAL CPU TIME. Both methods are using a
conservative range step (RNGSTP) of 1 meter, i.e., the
incremental increase in range is 1 meter in the propagation
calculations. For these conditions, the ODE solver is taking
over 30 times longer to run the simulation.

Tables 3.6 and 3.7 show the results for the positive
gradient case. A comparison between these two tables, as
well as the negative gradient results shown in Tables 3.8 and
3.9, shows acceptable agreement between the two very
different calculation methods. The only discrepancies in
calculated values occurs in the modulo 27 By phase values
needed for solving the phase integral. The phase calculation
is most challenging because of the nature of phase (being a
modulo 27 function). The discrepancies for both the positive
and negative gradients are on the order of hundred-thousandths
of a radian or less. The CPU times continue to follow the
pattern seen earlier that the ODE solver requires over 30
times longer to complete a simulation run.

The following ray trace plots, Figures 3.1 through 3.6,
correspond to Tables 3.4 through 3.9. The plots assist

interpretation of the data, but as expected from the tabular
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PIECEWISE LINEAR apPPROXIMATION
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results, no variations in depth or angle of arrival can be

detected.

D. CHALLENGING TEST CASES

A smooth sound-speed profile in the form of a half
sinusoid describes the medium for the next set of
simulations. To this point, the agreement in accuracy between
the two methods has been excellent; however, the shape of a
sine curve is difficult to approximate with piecewise linear
segments. While this will be a challenging test, smoothly
curved profiles do occur naturally. The following set of
values were used:

- 1500 m/sec is the sound speed at the ocean surface and
at the 2000 meter bottom, and

- a minimum sound speed of 1475 m/sec occurs at the 1000
meter depth.

Three sets of simulations are presented using 5, 11, and
17 sound-speed versus depth data pairs. The simulation
results will be examined to quantify the number of ocean
medium sound-speed samples required by each method to converge
to a solution. Also, the agreement in results for the two
methods and the CPU times will be evaluated.
As the number of equally spaced data pairs varies, the
medium and source conditions will be:
- source depth of 1000 meters,
- horizontal range of 3 kilometers, and
- five wvalues of radial spatial frequency (FR)

evaluated.
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Tables 3.10, 3.11, and 3.12 show the results for the 5,
11, and 17 data pair test cases for the piecewise 1linear
method. In comparing the first two of these tables, large
discrepancies are seen in the final depths for each of the
five radial frequencies evaluated—errors as large as seven
meters. Likewise, travel time values differ by hundredths of
a second mnmeaning that modulo 27 phase values show no
correlation between test cases. Unfortunately, the variations
between Tables 3.11 and 3.12 where more data points are used,
show the piecewise linear method is not converging to a
solution.

Figures 3.7 through 3.9 correspond to Tables 3.10 thrcugh
3.12. While numerical phase values show gross disagreement,
the 1inability to detect differences 1in the graphical
representations illustrates the very sensitive nature of the
phase calculations.

Tables 3.13 through 3.15 show the results when the ODE
solver runs the simulations for 5, 11, and 17 data pairs. The
5 data pair case of Table 3.13 again shows significant
disagreement with the Table 3.14 results using 11 data pairs.
Final depths show differences of as much as a meter while
travel times vary by milliseconds. As with the piecewise
linear method, the modulo 27 phase values have not yet
converged to a solution. Variations of up to 2 radians are

seen.
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TABLE 3.10
FIVE DATA PAIRS, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECERISE LINEAR APPROXNIMATION
CASE 150%

NDATA » S NUMBER OF GRADIENTS = &
G 1) s -0.35355€~01 1/SEC G{ 2) s ~-0.J46G5E-01 1/SEC
GC $) » 0.164645E-01 1/SEC G &) = 0.5535%E-01 1/SEC

ERAYS s F PRYALL = F

Y0 = 1000.0 M DEPTH « 2000.0 M FREQC = 250.0 H2 CMAX » 1%00.0 M/SEC
FREQC/CMAX « 0.16667 CYCLES/M RATIO = 0.9999 FRMAX » 0.16665 CYCLES/M NFRS = S

DLTFR « 0.033330 CYCLEZ/M RNGSTP = 1.0 M HRZRNG = 3000.0 M YR 40.0 M

NOTE: FRMIN « DLTFR

NFR BETAO(DEG) DEPTH(M) TRVLY(SEC) BETAY{DEG) THETAT(RAD) THETAR (RAD) THETAY(RAD) MODW.O TWOPI
THETAY(RAD)

1 11.341 166.74 10.207186 168.504 0.16033461E+05 O0.6282557E+05 0.154051%E4+0% $.0674943

? 2%3.160 “1.81 $.103511 156.449 0.8016262€«04 0.1256511E%04 0.6759751E+06 %.3264822

3 36,153 106¢.4% 3.402439 316.180 0.5364538E°06 0.1884767E°04 0.3459771E+0¢ 4. 0191220

< 51.0¢68 $82.6¢7 2.854747 127.902 0.40129B7E+06 0.2513C23E+0¢ 0.1699964E04 4.5658%15

S 79.4% 1510.3% 2.057830 81.249 0.83232433E+046 0.3141278E+04 0.9115404E+02 5.1894409

TOTAL CPU TIME » 0 MIN , 24.95 SEC

TABLE 3.11
ELEVEN DATA PAIRS, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION
CASE 1311

NDATA « |} NUMBER OF GRADIENTS » 10

Gt 1) » -0.38627E-01 1-SEC G I) » -D.348¢6E-0] 1/SEC
Gt 3) « -0.276%<E-01 ?/SEC Gl &) v -0.1775SE-01 )/SEC
G{ ) » -0.61179E-02 1/SEC Gt 6) = 0.61179E-02 1/3EC
G( 7) = 0.177%%€-01 1/3€C Gt 83 » 0.276%¢E-0) 1/SEC
Gl 9) o 0.34846E-01 1/SEC G(10) = 0.38627E-01 1/SEC

ERAYS = F PRTALL » F

Y0 « 1000.0 M DEPTH » 2000.0 M FREQC » 2%50.0 W2 CMAX s  1500.0 M/SEC
FREJQC/CMAX » 0.16667 CYCLES/M RATIO » 0. 900 FRMAX e 0.16665 CYCLES/M NFRS =« §

DLTFR s 0.033330 CYCLES/M RMG3TP o« 1.0 M HRZRNG » 3000.0 M YR = 0.0 M

NOTE: FRMIN « DLTFR

NFR BETAC(DEG! DEPTH(M) TRVLT(SEC) BETAV(DEG) THETAT(RAD) THETAR (RAD) THETAY(RAD) MODWLO TWOPI

THETAY(RAD)
1 1. 187.%0 10.216766  168.50¢ 0.160484CE*QS O .42BISSTEOS  0.15¢J020€+0% 1.26080644%
2 33.160 37.97 $.100373  1%56.649 0.80237642E+0¢ 0 .1I%¢S11E-06 0.6767231E+0¢ 0.2600057
3 36.1%3 1067 3¢ 3.40562% 36.16% 0.53¢0C4EE-04 0.1886767E+06 ©0.3664778E+0¢ 2.7430820
4 S$1.868 €79.33 T.857348  127.96S 0.4 17070E+04 0.2513033E<04 0.150<04BE*04 2.36636¢%]
s 7e.e0 1820.40 2.0eC168 81.3%4¢ 0.3236104E+04 0.3161278E<0¢ 0.94¢B82%80E°02 0.57801¢5%

TOTAL CPU TIME » 0 MIN . 2%.3¢ SEZ
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TABLE 3.12
SEVENTEEN DATA PAIRS, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION
CA3E 1S17

MDATA = 17 NUMBER OF GRADIENTS » 1¢

G( 1) = ~0,39018E-01 1/SEC G( 2) » -0.37519E-01 1/SEC

G{ 8) = -0.34877E-01 )/SEC G( 4) = -0.30307E-0] 1/SEC

G( S) » -0.24873E-01 1/SEC G( 6) = -0.184B2E-0] 1/SEC

Gl 7) = -0.11381E-01 1/SEC G( 8) = -0.38429€-02 1/SEC

G({ 9) » 0.38429E-02 1/SEC G(i0) « 0.11381E-01 1/SEC

Gtll) = 0.18482E-01 1/SEC G(12) » 0.24873E-01 )/SEC

G(13) = 0.30307E-01 1/SEC G(14) = 0.34577E-01 1/SEC

G(1S) = 0.37519E-01 1/SEC G(l6) = 0.39018€-01 1/SEC

ERAYS » F PRTALL = F

Y0 = 1000.0 M DEPTH = 2000.0 M FREQC = 250.0 HZ CMAX = 1500.0 M/SEC

FREQC/CMAX = 0.16667 CYCLES/M RATIO = 0.999%9 FRMAX o 0.16665 CYCLES/M NFRS » §

DLTFR » 0.033330 CYCLES/M RNGSTP = 1.0 M HRZRNG = 3000.0 M YR = 40.0 M

NOTE: FRMIN = DLTFR

MFR BETAOQ(DEG) DEPTH(M) TRVLT(SEC) BETAY(DEG) THETAT(RAD) THETAR(RAD) THETAY(RAD) MODULO TWOPI

THETAY(RAD)

1 11,341 136.67 10.217866 168.506 0.1605019E+05 0.6282557E+03 0.1542193E+0S 2.9937%877
2 23.160 $7.53 5.108620 156.449 0.8024602E+06 0.1256511E404 0.6768091E+04 1.1002238
3 36.158 1067.73 3.40599¢ 36.160 0.5350126E404 0.18B4767E*06 0.3465359E+04 3.3242727
4 $1.848 478.98 2.557644  127.973 0.4017538E+04 0.2513023E-04¢ 0.1504515E¢04 2.8338755
L) 79.494 1525.62 2.060452 81.522 0.3256550E+04 0.316]1278E+06 0.9527150E+02 1.02372647

TOTAL CPU TIME » 0

MIN . 25.96 SEC
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TABLE 3.13
FIVE DATA PAIRS, ODE SOLVER

RAY TRACING USING AKIMA CUBIC SPLINE 8 ODE SOUVER

CASE 2508

NDATA « &

ERAYS » F PRIALL « F

YC o 1000.0 M DEPTH e 2000.0 M FREQC » 290.0 M2 CHMAX = ]500.0 M/SEC
FREQC/CMAX » 0.14647 CVCLES/M RATIO o 0.9%s9y FRMAX = 0. 14663 CYCLES/M NFRS « §

DLTFR s 0.033330 CYCLES/M RNGSTP o 1.0 M HRZANG = 5000.0 M YR = W.0 M

NOTE: FRMIN o DLTFR

MFR BETAO(DEG) DEPTH(M) TAVLT(SEC) BETAYIDEG) THETAT(RAD) THETAR(RAD) THETAY(RAD) MODILO TwoPl

THETAY{RAD)
L$282857E408  0.1542%569E40% 0.4664177
L1256SLIES0C  0.4769980E-04 2.9091844
LIBBGTETES04 O.3466635E06 4.399701%
L2713023€404 O0.1505379E°04 3.6970753
LS14127BE+04  0.9534G6BE*02 1.09%¢89%38

11.341 136. 88
23.160 316.%¢
36.1538 1068 <%
$1.8¢8 €78.3%0
1% 6% 1521.82

NN WO

L2202%7  168.50¢ 0.)1605394E05
L10%873  186.452 0.8056491E+04
.406008 34.1%7 0.53516402€04
.5581%¢ 127,973 0.40104DRE04
.040¢9 81,304 0.3236623E40¢4

e A e N -
o o o 0o a

TABLE 3.14
ELEVEN DATA PAIRS, ODE SOLVER

RAY TRACING USING AKIMA CURIC SPLINE 8 ODE SOLVER

CASE 2511

NDATA = 1}

ERAVYS » F PRYALL ¢ F

Y0 = 1000.0 M DEFIH » 2000.0 M FREQC » 2%0.0 HZ CHMAX = 1500.0 M/SEC
FREQC/CHMAR o O 14647 CvCLES/M RATIO o D.909Y FRHAX » D.166¢5 CYCLES/M NFRS » %

DLTFRA ¢ 0.033330 CYCLES/M RNGSTR = 1.0 W HRZIRNG » 3000.0 M YR » 0.0 M

NOTE: FRMIN = DUTFR

NFR BETAQ(DEG) DEFTHIM) TRVLTISEC) BETAY{DEG) THETATI(RAD) THETAR(RAD) THETAY(RAD) MODIAO TwOP]

THETAY (RAD)
L218628  149.50¢ L1805130E+05 0.62828%7EDS  0.18562312E+0% &.1828982
109997 156 449 LB02S194E04  0.1254511E+046 0.6760683E+04 1.6%2062%

11.3¢1 136.09 0
0

€062%¢ 3¢.157 0.8350531E+0¢ 0.1884767E206 0. 3&45764E+04 $.7289877)
[
0

23.1¢40 §7.33
34.183 1067.97
$1.849 478,73
19.494 152239

[N R VR

557848 J27.978 LGC178%BE*04  0.2513023E+04 O0.1S04B3ISE04 8.1540898
.060638 81.312 J3234BIGEC06  0.3141278E406  0,9555559E402 1.5078008¢0

[ I T A

TOTAL CPU TIME o &8 MIN . }4.83 SEC

TAEBLE 3.15
SEVENTEEN DATA PAIRS, ODE SOLVER

RAY TRACING USING AMIMA CUBIC SFLINE & ODE SOLVER

CASE 2817

NDATA » |7

ERAYS » F PRTALL = F

Y0 » 10C0.0 % DEFTH « 2000.0 M FREQC = 2%0.0 M2 CMAX = 1500.0 M/SEC
FREQL /CMAX o . (4647 CVCLES/M PATIO » 0. 4980 FRMAX » 0.1466%5 CYCLES/M NFRS »  §

DLTFQ = 0.031380 CYCLES ™ ANGSTE & ].0 M MRZANG = 3000.0 M YR s  40.0 M

NOTE: FRMIN « D TFR

NFR BETAOIDES) DERTHMIM) TAVLT(SEC) BETAYIDEG) THETAT(RAD) THETAR(RAD) THETAY(RAD) MODILO THOP]
THETAY(RAD)

1 1o%en 13¢.33 12.210%80  1em . SN¢ 0.)60SISIE+0S OD.6282SSIE*C3  0.15C2305E+08 €. 11%¢874¢

2 23.160 17.2% $.108978  156.4¢Y 0.002SIS9E 04 0.1254511€404 0.6768¢CRE-DS 1.4%70617

3 e 188 1047, %¢ 104530 16.1%7 0.$350S07E°0& O0.1884767E-04 0.1¢¢%740E04 3.7058540

“ $1.848 478 7¢ 2.85°81¢ 107 T8 0.4017839£+04 0.2513023€+04 0.1504817E 04 3.1353%1¢

3 LA RS 4Y 18232 3¢ 2.06042% LIS W) O.3234B2JE*0¢ O0.316J278E*0¢ ©.9584874E~02 1.2959589

TOTAL CPU TIME = 47 WIN , €% 34 $E°

34




A comparison of Tables 3.14 and 3.15 shows that phase
calculation results converged for each of the five FR values.
The increase in data pairs to 17 from 11 has changed the
final depth wvalues by only a few hundredths of a meter.
Likewise, the very sensitive modulo 2T phase values show a
change of only hundredths of a radian or less. The ray trace
plots for Tables 3.13 through 3.15 are provided in Figures
3.10 through 3.12.

The CPU times for these three tables show the ODE solver
to be costly, but insensitive to increases in the number of
data pairs. That is, approximately the same amount of CPU
time is required regardless of the number of data pairs used.
The CPU time for the piecewise linear method also proved
fairly insensitive to the number of data pairs used as seen in
Tables 3.10 through 3.12.

The significant findings of this section are:

- the ODE solver can perform accurate phase

calculations with only 17 data pairs sampled from a

2000 meter deep ocean having a curved, sinusoidal

sound-speed profile,

- the piecewise linear approach does not converge to a
solution using the 17 data pairs, and

- the differential equation solver is very costly to use
in terms of CPU time versus the piecewise linear approach.
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E. SPECIAL INVESTIGATIONS

Each of the two phase calculation methods has shown one
characteristic weakness. The piecewise linear method did not
converge to a solution in the sinusoidal sound-speed profile
case when 17 data pairs or samples were provided. In
contrast, the ODE solver does converge to a solution, but is
costly in terms of CPU time. This section will attempt to
tailor the settings for each method to compensate for its
weaknesses.

The simulation results in Tables 3.16 through 3.18 were
produced by the piecewise linear method using 29, 55, and 65
data pairs, respectively. All medium and sound-speed profile
characteristics remain the same as in the previous section.
As the number of data pairs increases, the BY values are
converging to the Table 3.15 solutions obtained with the ODE
solver. Unfortunately, the phase values continue to show
unacceptable errors of tenths and hundredths of a radian for
the best case of 65 data pairs.

Table 3.19 shows the results for the ODE solver when the
range step (RNGSTP) parameter is increased to five meters. As
explained earlier, the range step 1is the differential
equation system independent variable. All calculations prior
to Table 3.19 used a conservative range step of one meter for
both methods. Table 3.19 compares favorably with Table 3.15
achieving a balance between CPU time and accuracy. While the

degradation in accuracy is only microseconds for travel time
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TABLE 3.16
TWENTY-NINE DATA PAIRS, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE 1529y
NDATA = 29 NUMBER OF GRADIENTS = 28
G( 1) = ~-0.39188E-0] 1/SEC G( 2) = -0.38695E-0) 1/SEC
G( ) « -0.37718E-01 1/SEC  G( &) = -0.36262E-01 1/SEC
G( S) = ~0,.34352E-01 1/SEC G{ ¢) = -0,.320)10E-0) 1/SEC
Gl 7) » -0.292646E~0]1 1/SEC G( 8) » -0.26154E-01 1/SEC
G( 9) ® -0.22712E-01 1/SEC  G(10) » -0,18986E-01 1/SEC
G(11) » -0.15020E-01 1/SEC  G(3}2) » -0.10866E-01 1/SEC
G(13) = -0.6¢5745E~-02 1/SEC G(14) = -0.22007E-02 )/SEC
G(IS) = ©0.22007€-02 1/SEC  G(16) » 0.68745E-02 1/SEC
G(17) = 0.10866E-01 1/SEC 0(18) = 0.15020E-01 1/SEC
G(19) = 0.18986E-01 1/SEC G(20) = 0.22712€E-01 }/SEC
G(21) = 0.261%4E-01 1/SEC G(22) = 0.2926$E-01 1/SEC
G(23) = 0.32010E-01 1/SEC 6(24) ¢ 0.34352E-01 1/SEC
G(25) = 0.36262E-01 1/SEC  G(26) « 0.37715E-01 1/$EC
G(27) = 0.3869SE-01 1/SEC  G(28) ¢ 0.39188E-01 1/SEC
ERAYS » F PRTALL = F
YO = 1000.0 M DEPTM » 2000.0 M FREQC = 250.0 W2 CHAX = 1800.0 M/SEC
FREQC/CMAX » 0.16667 CYCLES/M  RATIO = 0.9999 FRMAX » 0.16665 CYCLES/M NFRS = §
DLTFR = ©0,033330 CYCLES/M RNGSTP « 1.0 M HRZRNO « 3000.0 M YRe 40.0M
NOTE) FRMIN = DLTFR
NFR BETAG(DEG) DEPTH(M) TRVLT(SEC) BETAY(DEG) THETAT(RAD) THETAR(RAD) THETAY(RAD) MODWLO THOP1
¥ THETAY (RAD)
1 11.341 156.31  10.218362 168.%06 ©0.1605093E+08 ©.6282557E+03 D0.1542248E+05  3.76413092
2 23.160 $7.34 $.108857 156.44%  0.8024973E+D& 0,1256511€+04 0.6768462E+04 1.471084¢
S 36.153  1067.99 $.406158  36.157 0.5350360E+04 O0.188G7¢7E<0G 0.346S613E+04  3.3773983
¢  S1.8¢8 678.82  2.S57772 127.976¢ 0.G017739E+0& 0.2513023E+04 O0.1504716E+06 B.034874%
S 79.4%  1522.11 2.060567 81.320 0.3236730E+04 0.3141278E+04 0.9S45197€+02 1.204193¢

TOTAL CPU TIME = 0 MIN , 26.46 SEC
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TABLE 3.17
FIFTY-FIVE DATA PAIRS, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE 135%

NDATA o 8% NUMBER OF GRADIENTS e 54

G( 1) s -0.39248E-01 1/SEC  G( 2) = -0.39113E-01 )/SEC

G( 3) » -0.38850E-01 1/SEC Gl §) = -0.38453E-01 1/SEC

G( 5) = ~0.37926¢E-01 1/SEC G( ¢) = -0.37271E-01 1/SEC

G( 7) = -0.364%0E-0]1 1/SEC G( 8) = -0.35586E-01 1/SEC

G( 9) = -0.34561E-01 1/SEC G(10) » -0.33419E-01 1/SEC

G(11) = ~0.32163E-01 1/SEC G(12) » -0.30800E-01 1/SEC

G(13) s -0.29331E-01 1/SEC  G(14) = -0.27764E-01 1/SEC

G(15) » -0.26103E-01 1/SEC G(16) = -0.264353E-01 1/SEC

G(17) = -0.22521€E-0] 1/SEC G(18) » ~0.20¢)13E-0] 1/SEC

G(19) » -0.10635E-01 1/SEC G(20) » -0.1659G4E-01 1/SEC

G(21) = -0.14497E-0]1 1/SEC G(22) » -0.12350E-01 }/SEC

6(23) » -0.)0162E-01 1/SEC  G(264) = -0.79399E-02 1/SEC

G(25) = ~0.56907E-02 )/SEC G(26) = -0.34221E~-02 1/SEC

0(27) » ~0.11420€E~-02 1/SEC G(28) » 0.11420E-02 1}/SEC

G(29) = 0.34221E-02 1/SEC  G(30) « 0.56%07E-02 }/SEC

G(31) = O0.7939%5E-02 1/SEC  ©G(32) = 0.10162E-01 1/SEC

0(55) = 0.12350E-01 1/S€C 0(36) » 0.14497E-01 1/SEC

G(35) =« 0.1¢594E-01 1/SEC  G(36¢) = 0.18¢35E-0} 1/SEC

G(37) » b.20613E-01 1/SEC G(38) = 0.22521E-01 1/SEC

G(39) « 0.24353E-01 1/SEC G(40) « 0.26103E-01 1/SEC

G(41) = 0.277644E-0) 1/SEC G(42) = 0,29331E-01 )/SEC

G(43) s 0.30800E-0) 1/SEC G(&4) s 0.32163E-0] 1/SEC

Gt45) & 0.33419E-01 1/SEC  G(46) = 0.36¢561E-01 1/SEC

G(4?) = 0.35586E-01 I/SEC G(48) = 0.36490E-01 1/SEC

G(49) » 0.37271E-01 1/SEC  G(S0) = 0.37926E-01 1/SEC

G(S1) » 0.384S3E-01 1/SEC 6(52) = 0.38850E-0} }/SEC

G(S3) « 0.391185E-01 1/SEC G(S4) = 0.39248E-01 1/SEC

ERAYS = F PRTALL = F

Y0 = 1000.0 M DEPTH = 2000.0 M FREQC = 250.0 HZ CMAX = 1500.0 M/SEC

FREQC/CMAX » 0.16467 CYCLES/M RATIO = 0.9999 FRMAX » 0.16¢68 CYCLES/M NFRS = 8

DLTFR « 0.033330 CYCLES/M RNGSTP = 1.0 M HRZRNG = 3000.0 M YR = 40.0 M

NOTE: FRMIN o DLTFR

NFR BETAO(DEG) DEPTH(M) TRVLT(SEC) BETAY(DEG) THETAT(RAD) THETAR(RAD) THETAY(RAD) MODWO TWOPI

THETAY(RAD)

1 11.341 13¢.10 10.218510 148.50¢ 0.1605120E+05 0.62825S7E+03 0.1562294E+05 €.0060532
2 23.160 37.28 $.108940 156.644Y 0.80251064E+06 0.1256S11E404 0.6768593E+0¢ 1.64024788
3 36.183 1067.9%¢ $.406215 36.1%7 0.S350670E406 0.1984767E+06 0.3665702E+04. 3.4673828
4 $1.848 678.77 2.%%57817 127.917 0.4017810E+06 0,.2513023E+04 0.1504787E+04 3.1058334
5 79.494 1522.29 2.060608 e1.317 0.3236795E+06 0,.3161278E406 0.9551684E*02 1.26490645

TOTAL CPU TIME = ¢ MIN , 24.6] SEC
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TABLE 3.18
SIXTY-FIVE DATA PAIRS, PIECEWISE LINEAR SOLUTION

AAY TRACING USING PIECEWISE LINEAR APPROXI[MAT]ON
CASE 156%

NDATA » 6% NUMBER OF GRADIENTS = 64

Gl 1) 2 -0.3%2856E-01 }/SEC  5( 2) » -0.39160E-0) 1/3EC
G 3) « -0.38971E-01 1/2EC  G( 6) = -0, 18488E-01 1/SEC
Gl S) =« -0.IB312E-01 1/3EC Gl 63 = -0.1784GE-Gl L/3EC
Gt 7) & -0.8729GE-01 1/%EC G( 8) = -0.26635E-01 1/SEC
Gl 9) = -0.35897€-01 1/SEC  G(10) = -0.35073E-01 1/SEC
G{11) v -0.3¢16SE-01 }/SEC  G(12) = ~0.33174E-0] 1/SEC
Gi13)y » -0.371CJE-0)1 1/SEC  G(1G) = -0 100SSE-01 1/5EC
GU15) = -0.29731E-0]1 1/3EC  Gtlé) s -0.28428E-01 )/SEC
G(1?7) = -0.2707SE-01 1/3EC  G{1B) » -0.25647E-0] 1/SEC
Glle) » -0.24158E-01 1/3EC  G(20) » -0.20610E-01 1/3EC
GL21) » -0.21007€E-01 1/3EC  GI(I2) = -0.)9354E-01 )/SEC
G(25) » ~0.1765GE-01 1/SEC  G(24) » -0.1S912E-01 1/5EC
G(2S) » -0.14132€-01 1/SEC  G(I6) = -0.12317E-0) }/5EC
GiZ7) » -0.10473€-01 1/SEC  GI28) » -0.86032E-02 }/SEC
Gi2®) » ~0.67130E-02 1/SEC  G(30) = -0.GB06$E-02 1/5.C
GU(S1) » ~0.288864E-02 1/SEC  G(32) » ~0.96344E-03 |/SEC
GUS3) o 0.9636¢E-03 1/SEC  Gi34) = .288B6E-02 1/SEC

o

G(35) & 0.48066E-02 1/SEC G(36) = 0.67)120E-02 1/SEC

G(3I7) » 0.86032E-02 1/SEC G(I8) = 0.1047E-01 1/SEC

Gt.9) » O0.12317E-01 }/SEC GI40) » 0,.14132E-01 }/SEC

©fe1) =2 0.1%5912€-01 }/SEC Giel) = D.176%GE-D]1 1/3EC

G(43) » D.1%3S4E-01 1/SEC Gtes) = 0.21007E-01 1/SEC

G(4S) » 0.22610E-01 }/3EC G(G6) = 0.264)58E-0} 1/SEC

Gt4e7Y = 0.2%647E-01 }/SEC G(48) = 0.I7075E-01 )/SEC

G(a®) » 0.28438E-01 1/SEC GiS0) = 0.09733E-081 1/SEC

GIS}) » 0.309%SE-01 1/SEC G523 = 0.32103E-01 }/SEC

GtS3) » 0.3317¢E-01 1/SEC G(S6) = 0.34165E-01 1/SEC

G19%) » 0.3%073E-08) )/SES Gi%6) = 0.359%7E-0)1 1/5EC

GUS7) » 0.24635E-01 1/%6C G(S8) v ©0,37784E-01 1/SET

GIS9) » 0.3784<E-01 1/3EC G(60) = 0.383I17E-01 1/%EC

Giél}) = 0.38¢88E-01 1/SEC G(e2) = 0.38¢71E-0} 1/SEC

Glé3) = 0.39160E-01 1/S€EC G(64) » 0.39754E-01 )/SEC

ERAYS 2 F PRTALL » F

Y0 » 1000.0 ™ DERPTH s 2000.0 M FREQC » 2%0.0 M2 CMAX = 1500.0 M/SEC
FREQC/CMAX « §.16642 CYCLES/M RATIO s 0, %99¢ FRMaX = 0.16665 CYCLES/M NFRS & S
DLTFR » 0.032330 CYCLES/M ANGSTP & 1.0 M HRIANG » 3000.0 M YR = 40.0 M

NOTE: FRMIN « DLTFR

NFR BETAO(DEG) DEPTH(M) TRVLT(SEC) BETAYIDEG) THETAT(RAD) THETAR(RAD) THETAYIRAD) MODWLO TwOP!
THETAY{RAD)

1 11.3¢6) 13¢.17 10.218%28 168 .50¢ 0.1605123E+05 0.6282%597E<03  0.15622%7E+0S €.0340899
2 23.160 $7.27 5.100%e ]S¢ 4@ 0.80.5118E+0¢ 0.1256S11E<04 0.6768607E-0¢ 1.6163983
H 36.153 1067 . %6 3.60822 36.157 0.53S047%E-06 O0.188947¢7E+06 0.3465717E+04 31.6769518
4 S1.848 478.7¢ 2.8%7812 127.%78 0.4017818E+04 0.JSIZO0IIE*06 0.1506796F«0¢ 2.11364051
s 79.469%¢ 1522.8 2.060612 81.317 0.3206800E0¢ 0.3161278E+04 ©.°557360E-00 1.27%8037

TCTAL CFU TIME = 0 MIN , 26.84 SEC
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TABLE 3.19
INCREASED RANGE STEP, ODE SOLVER SOLUTION

RAY TRACING USING AKIMA CUBIC SPLINE & ODE SOLVER

CASE 23517

NDATA s |7

ERAYS » F PRTALL » F

YO s 1000.0 M DEPTH » 2000.0 ™ FREQC » 2%50.0 HZ CHMAX = 1500.0 M/SEC
FREQC/CMAX 3 0.16667 CYCLES/M RATIO « 0.9999 FRMAX » 0,16665 CYCLES/M NFRS & &

DLIFR = 0.03333C CYCLES/M RNGSTP s 5.0 M HRIRNG « 3000.0 ™ YR = 0.0 M

NOTE: FRMIN = DUTFR

NFR BETAO(DEG) DEPTH(M) TAVLT(SEC) BETAY(DEG) THEYAT(RAD) THETAR(RAD) THETAY{RAD) MODULO TWOPI
THETAY (RAD)

1 11.361 136.09 10.218%84  168.50¢ 0.1605)31E+0% 0.6282SS7E*0% 0.1542306E+0% $.1219846

2 25.160 $7.2%8 $.10897%  156¢.449 0.8025159E04 0.1256S11E+06 0.6768648E+04 1.65704%7

b 36.183 1067.96 3.406039 36.157 0.5350507E-0¢ 0.188G767E+0¢ 0.34657C0E0¢ 3.7047770

< S1.868 478.74 2.55783¢8 127.978 0.40K7BI%E-04 0.2513023E+06 0.1504817E+06 5.13%3500

5 79.469% 1522.36 2.060625 81.317 0.3036822€40¢ 0.3141278E+046 0.95545379E 02 1.29%960153

TOTAL CPU TIME » 10 MIN , 3.853 SEC

and‘hundreds or thousandths of a radian for modulo 27 8,, the
reduction in CPU time is following a nearly linear relation
to the increase in range step, that is, CPU time was reduced'

approximately by one-fifth.

F. EIGENRAYS

Tables 3.20 and 3.21 show the eigenrays found by the two
ray acoustics methods. Figures 3.13 and 3.14 correspond to
these two tables. The figures show the sound-speed profile to
be that of a SOFAR channel. This channel profile was chosen
because it produces interesting ray patterns, and it commonly
occurs in nature. The minimum sound-speed occurs at 1000
meters depth and a local minima occurs at the ocean surface.

The tables show that each method found the same eigenrays at
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TABLE 3.20
EIGENRAYS FOUND USING THE
PIECEWISE LINEAR APPROXIMATION METHOD

RAY TRACING USING FIECEWISE LINEAR APPROXIMATION
CASE 1CH4

NDATA = & NUMBER OF GRADJENTS =+ 3
Gt 1) = O.16000E-01 1/3JEC Gt 2) * -0.1RBY?E-01 1/%EC
Gt 3y = 0.170006-01 1/5€7

ERAYS = T FRTALL = F
YO = 100.0 M DEMTH » 2000.0 M FREOC = 250.0 HZ
RMNGSTP 8 S.0M AMGLTR = 1.0 DEG HRZRNG = 200.0 M YR s 250.0 M
YERROR = S.0M
E{GENRAYS
RAY BETAO(DEG) DERTM(H) TRVLY(3EC) BETAY(DE) THETAT(RAD) THETAR(RAD) THETAY(RAD) HbDULO ™mop|
THETAY(RAD)
1 83.000 251.11 0.167749 52.8%¢ 0.2627462E+0% 0.16724%1E°08 0.9549710E02 1.26493187

2 54.000 245,67 0.185112 53.656 0.2592569E+03 0.16%.232E+08 0.8993371E02 1.9621119
t 1%50.000 246.73 0.267040 29.°39 0.41%G64%E+03 O0.10470%3E+03 0,.3167556E+083 0.596377%

TOTAL CFU TIME = 0 MIN , 22.47 SFC

TABLE 3.21
EIGENRAYS FOUND USING THE
ODE SOLVER METHOD

RAY TRACIMNG USING A IMA CURIC SPLINE & ODE 3OLVER

CATE 20M4

MOATA = &

ERAVS & T FRIALL = F

VO r 1000 M DFEFTI - 2000 .0 M FREOC » 250.0 HZ

RMGSIP « $.p M ANTSTE w 1.0 DEG HAZRNG = 200.0 M YR 2 250.0 M

YERRNOR = L

F1RENRAYS
QAY BETAO(DEG) DEFTHIM) TRVLIINEC) RETAYI(DEG)  THETAT(RAD) THETAR(RAD) THETAY(RAD) HODULO TwOr1
THETAY (RAD)

1 $3.000 250 .R% 0.167063 $2 010 0.2626214E+03 O0.16726¢91E+03 0.9517750E+02 6.9267230°
2 %4 000 AN LUBS CRERD Iy %3 912 0.289%043%E+03 O0.1694JIZE*03 O .8°6J7027Es02 1.65%722¢
3 15n.00n 246 .%4 0.265308 29,971 0.617[863E+03 0.10670%7E+03 0.3144470E:03 0.20877732

TOTAL CFU TIME + 24 MIN , |2.84 "EC
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Figure 3.13 Ray trace plot corresponding to Table 3.20
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Ray trace plot corresponding to Table 3.21

Figure 3.14




launch angles of 53, 54 and 150 degrees. The tables highlight
this problem's parameters to be:

- a source depth y, of 100 meters;

- a receiver depth y_of 250 meters;

- and a horizontal range (HRZRNG) to the receiver of 200
meters.

As expected, the ODE solver runs into range limitations
imposed by CPU time requirements. The 200 meter example
presented consumed over 24 minutes of CPU time us.ing the CDE
solver versus the 21 seconds used by the piecewise linear
method.

Tables 3.22 and 3.23 (along with their corresponding
Figures 3.15 and 3.16) show solutions to long-range eigenray
search problems. These two examples continue to use a source
depth y, of 100 meters and a receiver depth y, of 250 meters.
Table 3.22 shows a horizontal range (HRZRNG) of 10 kilometers
with a depth error y,,., at the receiver of 2 meters. The
angle step size (angstp) between each ray is 0.1°. Table 3.22
also shows that three eigenrays were found with launch angles
of 51.2°, 90.9° and 129.5°. The CPU time for this 10km run is

shown to be 8.5 minutes.
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TABLE 3.22

LONG RANGE EIGENRAYS, PIECEWISE LINEAR SOLUTION
RAY TRACING USING FIECEWISE LINEAR AFPRCXIMATION
CAZE 1CHG
NDATA = 4 NUMBER OF CGRADIENTS = 3
Gt 1) = 0.16000E-01 J/CET Gl ) = -0.1888°%E-01 1/3EC
Gl 3) = 0.1700CE-0! )/SEC
ERAYS = T PRTALL = F
Y9 = 100.0 M DEPTH = 2000.0 M FREQC = 250.0 HZ
RNGSTP = 5.0 M ANGSTP = 0.1 DEG HRZRNG = 10000.0 M YR = 250.0 M
YERROR = 2.0 M

EIGENRAYS

RAY BETAO(DEG) DEPTH(M) TRVLT(SEC) BETAY(DEG) THETAT(RAD) THETAR(RAD) THETAY(RAD) MODULO TWORI

THETAY(R&D)

1 51.200 248.91 8.6459¢8 51.067 0.1353106E+05 0.8160390E+04 0.54J0648E0G 6.5642056%
2 90.9C0 250.77 6.6749%%¢ 86.256 0.1068506E+05 0.1046969E+05 0.1542212E+02 2.855762¢
3 129.500 249.21 §.7:2178 50.370 0.1271365E405 0.8079626E+04 0.5614QJ0E*04 4.285%781

YOTAL CPU TIME =« 8 MIN ,

LONG RANGE EIGENRAYS,

311.:18 SEC

TABLE 3.23

RAY TRACING USING FIECEWISE LINEAR AFPROXIMATIOM

Casg 1CH¢
NDATA = 4 NUMBER OF GRADIENTS = %
Gt 1y = 0.1600CE~01 1/3EC Gt ) = ~0.1888°%E-01 }/5EC
Gt 3) = 0.17000€-01 1/3EC
ERAVS = T FRTALL = F
Y0 = 100.0 M DEFTH = 2000.0 M FREQC = 250.0 M2
RNG3TP = S.0M ANGITF = 1.0 DER HRZRNG = 50000.0 M YR = 250.0 M
YERROR = 1S.0 M
EI1GENRAYS
RAY BETAO(TIG) DECTH(M]) TRVLT(SEC) BETAVI(DEG) THETAT(RAD) THETAR(RAD) THETAY(RAD) MODULG TWCP]

PIECEWISE LINEAR SOLUTION

THETAV(RAD)

1 40,000 J16.69 52.421873 $3.917 0.8234¢0JE+08% 0.3365091€+05 0.4B6°10%E+0S 2.6894315
2 In2.000 £61.00 34.440072 162.53% 0.5600°958E¢05 0.S121057E+*05 0.7888117E+04 4.1150578
3 11e.00¢ 239,38 18.570812 6C.820 0.6057925E«0% 0.4579040E+05 0.1471795E+05 2.7282732
4 122.000 I87.74 39.726666 s2.182 0.6241507E+0% 0.4439925E+05 0.1801%81E+08 1.920309°
TOTAL CFU TIME = 4 MIN , 27.61 SEC

48




w C'C +u0EE3A L
W 005C t¥A WY C'0T :ONSZaH W

(W 39Nge
s 00g

~
[=]

LAy -
Z lge ©
i gk O

083537

I- 008!

b 00T

-+ oo

-}~ 000t

]
]
g

- 00

t- 002

WO lium, Aoccon 3o ZoiMLodic Toouel age [Er

—y —

(WIHEA30

Ray trace plot corresponding to Table 3.22
49

Figure 3.15
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Table 3.23 shows simulation results using the piecewise
linear method with a horizontal range (HRZRNG) of 50Kkm.
Parameters that affect execution time such as angle step size,
depths, etc., match the simulation presented in Table 3.21
using the ODE solver. Table 3.21 shows that the ODE solver
used 24 minutes to complete a 200 meter range eigenvalue
problem. In comparison, Table 3.23 shows that the piecewise
linear method completed the 50km run in only 4 minutes.

In summary, this chapter has shown that

-~ the ODE solver performs accurate phase calculations
with far fewer data pailr samples when a smooth
sound-speed profile is encountered;

- increasing the range step size of the ODE solver to
five meters reduces the CPU time cost without

signficantly affecting the phase solution accuracies;

- the piecewise 1linear method can run long-range
simulations using relatively little CPU time; and

~ the piecewise linear method requires many sound-speed

data pair samples for an accurate solution in a medium
with a smooth, sinusoidal profile.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The transfer function of the inhomogeneous ocean based on
the WKB approximation requires solving a phase integral. Ray
acoustics theory can provide solutions to this phase integral.
The simulations performed show that the travel times
calculated using the theories of ray acoustics can be used to
solve the phase integral avoiding direct numerical
integration.

Two applications of ray acoustics produced computer
simulation codes which

- are capable of solving for the position, travel time
and phase of a propagating ray, and

- have very different advantages and costs.

The first application was the piecewise linear approximation.
Sound-speed versus depth data pairs sampled from the ocean
medium were connected with constant gradient linear segments.
Well-known, closed form equations form the mathematical model
for sound propagation. The solutions are low cost (in terms
of CPU time), but many data samples are required for accurate
phase solutions for arbitrary sound-speed profiles.

In contrast, the Akima cubic spline/ODE solver method uses
the medium samples to form a continuously variable sound-speed
profile. Accurate phase calculations can be made with a
minimum of sound-speed versus depth data pairs. The
disadvantage in using the ODE solver is its exorbitant cost in
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terms of CPU time. Simulations must be short range problems
to limit computing costs.

The ability to search for and identify eigenrays was
developed for each of the two ray acoustics theory
applications. Very distinctive characteristics were seen for
phase calculations in terms of the number of data samples
needed to assure accurate solutions. The identification of
eigenrays is an easier task of position or depth computation.
Here the distinctions tend to disappear with the two methods
arriving at the same solutions for eigenray launch angles.
The cost or CPU time required continues to strongly favor
using the piecewise linear approach.

These findings indicate that most propagation problems
will require a piecewise linear approach for computational
efficiency. Using the ODE solver would severely limit the
range of computer simulations.

Careful sampling of the ocean media is required to obtain
accurate results from the piecewise linear method. Sufficient
sound-speed versus depth data pairs must be used to accurately
represent the sound-speed profile.

This thesis developed the tools to quantify the strengths
and weaknesses of two phase computation methods in a variety
of media. With these findings in mind, future work
recommendations are to

- incorporate each phase computation technique as a
module in the larger pulse propagation code; and
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- run pulse propagation simulations to compare the
received pulse shapes.

If this comparison shows that the piecewise 1linear
approximation produces a relatively undistorted received
pulse, it is an efficient solution to the phase computation

problem.
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